
Acronyms / Jargon / Etc
Preparing Observation Schedules
Preparing Observation Schedules With `prepquick.py`
Queuing an Observation Schedule
Interrupting Scheduled Observations
Processing Pulsar Data
Processing Solar Data (Basic)
Processing Other Data (EMPTY)
Bash Aliases

Quickstart Guide

LGC - Linux gateway computer, main node used to access the LCU and REALTA

LCU - Linux control unit, the telescope's brain, used to configure observations, accessibly only via
the LGC on the ilofar user

ucc1 - Main recording machine

REALTA:/mnt/ucc1_recording2/data/observations/YYYY_MM_DD - recording drive path

REALTA:/mnt/ucc1_recording2/data/scripts - recording scripts locations

ilofar@LGC:~/scheduling/schedules - input schedule file folder

Software level (swlevel)

0 - Station is shutdown
1 - Station has basic power
2 - Minimum observing mode, hardware can generate antenna correlations
3 - Station is fully setup and can beam-form
4+ are not needed in a quick-start guide

RCU Modes

3: LBA, 0 - 100MHz
5: HBAlo, 100 - 200MHz
7: HBAhi, 200 - 250MHz

Data products

BST: typically 1 second cadence data
XST: Antenna cross-correlations for all-sky imaging
CEP/REALTA Data: The 3Gbps data stream containing 5.12us data

Acronyms / Jargon / Etc
Machines

Paths

Concepts

Observations are typically scheduled using scripts that execute the quicksched.py script found on
the LGC. This is a python3.6+ script that takes in a file with schedule entries in a specified format,
and then produces two files to observe the specified sources with the HBAs in mode 5 from
subbands 12 to 499.

Each entry roughly follows the format

These can be chained together to form a schedule that looks like this.

After running python3 quicksched.py --no-write my_schedule.txt , it will notify you of any issues with the
input, or give you a summary of the observations taking place.

STOPSTART : In the case that other observations are scheduled using other software, and you need
to leave a gap, you can add STOPSTART to the end of the line after the gap takes place. Whenever
this keyword is detected, the station shuts down after the previous observation, then starts up 3
minutes before the given scheduled observation is meant to begin. As an example, these
observations will run from 19:27 - 20:29, bring the station down to swlevel 0 for an hour, bring the

Preparing Observation
Schedules
Scheduling Observations

The telescope typically takes 3 minutes in order to be configured before the first (and any
STOPSTART) observation begins to produce real data. Additionally it is not uncommon for
station handover to occur late. Ensure you consider these points when scheduling high
priority observations.

YYYY-MM-DDTHH:MM - YYYY-MM-DDTHH:MM :<TAB>SourceName [RightAscentionRadians, DeclinationRadians,
'COORDINATEBASIS']

2021-09-20T19:30 - 2021-09-20T20:29 :	J1931+4229 [5.110297162889553, 5.110297162889553, 'J2000']
2021-09-20T20:30 - 2021-09-20T20:49 :	B1951+32_PSR [5.20531221260202, 0.5738302241353217, 'J2000']

Entry Modifiers

https://gist.github.com/David-McKenna/36d3e44dc0eb5e0c03e68c5cc1400fff
https://gist.github.com/David-McKenna/36d3e44dc0eb5e0c03e68c5cc1400fff

station up at 21:30, and finally run again from 21:33 - 21:59 before returning the station to
software level 0.

[IGNORE_ELEVATION] : In the case that a source will be below the default minimum elevation
(typically between 10 and 15 degrees depending on setup), the quicksched.py script will reject the
observation. If you intend to observe the source at such a low elevation, you can include
[IGNORE_ELEVATION] to highlight that you intend to observe this source at a low elevation and the
script will proceed without highlighting the elevation of the source.

[MODEN] : Where N is replaced with an observing mode (3-7), this will change the observing
antenna and frequencies from the mode 5 default to the specified mode as needed.

OR(TOGGLE_FILE) : Where "TOGGLE_FILE" is replaced with a file name of choice, this modifier can be
used to switch between two observations during schedule execution based on the existence of a
file. By default, the first entry on a line will be performed if the file does not exist, while the second
will be executed if it does exist. Two files need to be created to perform a toggle: one in the
observation folder, and another in the recording folder. Typically, the file name is prefixed by
"NOT_" to make it clear that it is disabling the first observation, and enabling the second.

The file must be created before the end of the last observation, otherwise the default observation
will be performed.

For I-LOFAR observers, there is a toggle_obs.sh script that will create the input filename in the
correct directories for you.

2021-09-20T19:30 - 2021-09-20T19:59 :	J1931+4229 [5.110297162889553, 5.110297162889553, 'J2000']
2021-09-20T20:00 - 2021-09-20T20:29 :	B1951+32_PSR [5.20531221260202, 0.5738302241353217, 'J2000']
2021-09-20T21:33 - 2021-09-20T21:59 :	J1931+4229 [5.110297162889553, 5.110297162889553, 'J2000']
STOPSTART

2021-09-20T19:30 - 2021-09-20T19:59 :	J1931+4229 [5.110297162889553, 5.110297162889553, 'J2000']
2021-09-20T21:33 - 2021-09-20T21:59 :	J1931+4229 [5.110297162889553, 5.110297162889553, 'J2000']
[IGNORE_ELEVATION]

Further validation is needed for mode 6, as it sometimes fails to change the clock mode.

2021-09-20T19:30 - 2021-09-20T19:59 :	J1931+4229 [5.110297162889553, 5.110297162889553, 'J2000']
[MODE3] # LBA Obs
2021-09-20T20:00 - 2021-09-20T20:29 :	J1931+4229 [5.110297162889553, 5.110297162889553, 'J2000'] #
HBALo Obs
2021-09-20T20:30 - 2021-09-20T20:59 :	J1931+4229 [5.110297162889553, 5.110297162889553, 'J2000']
[MODE7] # HBAhi obs

After an observation is switched, the file is removed. As a result, it is not recommended to
use the same file name for multiple switches, unless the observer wants to re-create the
same file multiple times.

2022-07-19T17:00 - 2022-07-19T17:59 :	FRB20200120E [2.6090272489593733, 1.2012325539587194, 'J2000']
OR(NOT_M81) [Sun357]
2022-07-19T18:00 - 2022-07-19T18:59 :	[Sun357] OR(NOT_SUN) J0939+45 [2.528618475878951,
0.7897614865274342, 'J2000']

The `prepquick.py` script can be used to generate a number of candidate observation windows,
based on transit time and observation length, or on source elevation. Each file must start with a
start time, which can then be followed by a number of lines with source names, coordinates and
information regarding the observation length.

Any information on a line after a '#' is not parsed.

Sources can be defined by either a set of coordinates in a common basis (J2000, SUN, JUPITER,
etc.) or by a name recognised by the CDS, which will be queried by an
astropy.coordinates.SkyCoord.from_name() call.

Most solar entries will be automatically converted to mode 357 entries.

Here's an example set of inputs and outputs in both forms, with the time specifiers removed for
clarity:

Preparing Observation
Schedules With
`prepquick.py`

The script does not attempt to realign overlapping observations, you must manually fix
these issues before quicksched.py will accept them.

Defining Sources

#input.txt
Sun
Moon
PSR B1951+32
J0054+66 [0.23561944901923448, 1.1664616585719019, 'J2000']
TVLM 513-46

#output.txt (self rearranged by start time)
[Sun357]

https://docs.astropy.org/en/stable/api/astropy.coordinates.SkyCoord.html#astropy.coordinates.SkyCoord.from_name

You can get the observing window for a source while it is above a certain elevation by appending a
tilde and elevation in degrees. The elevation will be overruled by the value of the `--cutoff` flag if it
is set too low.

Otherwise, you can use an observation length to get a candidate schedule for a source by
appending a tilde and an observation window in minutes. Note that due to the necessary time
needed between beam switches, a minute will be subtracted from this time.

J0054+66_PSR [0.23561944901923448, 1.1664616585719019, 'J2000']
MOON [0, 0, 'MOON']
TVLM_513-46 [3.931949476576734, 0.3985272105537257, 'J2000']
B1951+32_PSR [5.205312212078421, 0.5738302241353217, 'J2000']

Observing by Elevation

input.txt
2023-04-05T00:00:00.000
Sun ~ 15
J0139+3336 ~ 45
Jupiter ~ 20

output.txt
2023-04-05T07:40 - 2023-04-05T17:24 :	[Sun357]
2023-04-05T08:30 - 2023-04-05T17:14 :	JUPITER [0, 0, 'JUPITER']
2023-04-05T09:25 - 2023-04-05T17:09 :	J0139+3336_PSR [0.4361308670963172, 0.586720056619953, 'J2000']

Observing by Observation Lengths

input.txt
2023-04-05T00:00
Sun @ 75
J0139+3336 @ 120
Jupiter @ 30

output.txt
2023-04-05T12:00 - 2023-04-05T13:14 :	[Sun357]
2023-04-05T12:20 - 2023-04-05T14:19 :	J0139+3336_PSR [0.4361308670963172, 0.586720056619953, 'J2000']
2023-04-05T12:40 - 2023-04-05T13:09 :	JUPITER [0, 0, 'JUPITER']

A starting line containing a ISOT-formatted date/time string is required in order to determine the
source transits. One or more of these lines can be included in the file, and all following sources will
be parsed using the last provided timestamp.

The script will determine the next transit after a given time (be it in 5 minutes or 23 hours), and
produce the scheduling line candidate based on that. Here is an example that combines each of
the described properties above, alongside using multiple different transit times.

Times

input.txt
2023-05-30T06:00
Sun ~ 15
Moon @ 20
PSR B1951+32 @ 20
J0054+66 [0.23561944901923448, 1.1664616585719019, 'J2000'] @ 20
TVLM 513-46 ~ 55

New day, new observations
2023-06-01T18:00:00.000
Sun ~ 45
J0139+3336 ~ 45
Jupiter ~ 20

2023-06-03T11:00:00.000
Sun ~ 45

output.txt
2023-05-30T06:10 - 2023-05-30T18:44 :	[Sun357]
Note the overlap of this observation, this needs manual tweaking
2023-05-30T08:45 - 2023-05-30T09:04 :	J0054+66_PSR [0.23561944901923448, 1.1664616585719019, 'J2000']
2023-05-30T20:15 - 2023-05-30T20:34 :	MOON [0, 0, 'MOON']
2023-05-30T21:25 - 2023-05-31T00:29 :	TVLM_513-46 [3.931949476576734, 0.3985272105537257, 'J2000']

2023-05-31T03:40 - 2023-05-31T03:59 :	B1951+32_PSR [5.205312212078421, 0.5738302241353217, 'J2000']

2023-06-02T05:05 - 2023-06-02T14:39 :	JUPITER [0, 0, 'JUPITER']
2023-06-02T05:35 - 2023-06-02T13:19 :	J0139+3336_PSR [0.4361308670963172, 0.586720056619953, 'J2000']
Note that this sun entry is the day after the time stamp provided
2023-06-02T09:35 - 2023-06-02T15:19 :	[Sun357]

2023-06-03T09:35 - 2023-06-03T15:19 :	[Sun357]

Once you have used the previous two guides to build a schedule file, you can then send it to be
queued for observations. The schedule should be moved into directory at
/home/ilofar/scheduling/schedules by whatever is determined the preferred method. On the ilofar user,
the folder can be quickly accessed using the sched alias.

Once the file is in the folder, the monitoring service should notify you and pick up the file. It will be
validated with the quicksched.py script, and then either moved to one of the prepared or failed
directories, depending on the output. In the case of failure, the logs should be piped to you, or they
will be accessible in the logs folder inside the scheduling directory. The file can be modified in the
failed directory, and moved back one directory once you believe the issue is resolved.

A second monitoring process check for any files in the prepared directory initially when the files are
moved in to the directory, then every 4 hours afterwards. If a schedule starts within the next 24
hours, it will be queued for execution, after which the interrupt.sh script will be needed to exit the
opened shells, screens and tmux's before submitting a replacement schedule.

Queuing an Observation
Schedule

Working in the scheduling directory is strongly discouraged. It will very likely lead to
frustration and spam for any other users on the ilofar account. It is advised to prepare
schedules on your local machine or in the temp folder.

dmckenna@americano:~/git/scheduling$ rsync -avhP ./sched_2023-06-06.txt
~/scheduling/schedules/tmp/sched_2023-06-06.txt
dmckenna@americano:~/git/scheduling$ ssh ilofar@lgc

ilofar@LGC:~$ sched
ilofar@LGC:~/scheduling/schedules$ cat ./tmp/sched_2023-06-06.txt
2023-06-06T07:00 - 2023-06-06T13:29 :	[Sun357]
2023-06-06T13:30 - 2023-06-06T13:59 :	Crab_PSR [1.4596732110242794, 0.3842252837309499, 'J2000']
ilofar@LGC:~/scheduling/schedules$ mv ./tmp/sched_2023-06-06.txt ./
ilofar@LGC:~/scheduling/schedules$
Message from ilofar@LGC on (none) at 15:16 ...
Attempting to parse new input schedule at /home/ilofar/scheduling/schedules/sched_2023-06-06.txt
EOF

Message from ilofar@LGC on (none) at 15:16 ...
/home/ilofar/scheduling/schedules/sched_2023-06-06.txt: Success; moving schedule to the
/home/ilofar/scheduling/schedules/prepared/ directory.
EOF
<ENTER>
ilofar@LGC:~/scheduling/schedules$

The interruptObs.sh script operates in one of two modes: focused and global. In focused mode, it
will take an input schedule, determine the relevant launched instances for that schedule, and
specifically shut down all related screens, tmuxes and processes. In global mode, the script will kill
anything related to our scheduling scripts.

See date(1) (-d input) for further details on accepted time stamps. We also support "next" in
focused mode, which will parse the input file, find the next gap between observations, and perform
the switch then to minimise downtime.

In focused mode, you must provide at least an interruption time (in a format accepted by date),
and a reference schedule to analyse. You can optionally provide a third parameter with a
replacement schedule if you do not want to manually staged and run another schedule afterwards.
These are all valid examples for killing a specified "./schedule/my_sched.txt" schedule file.

In global mode, you just need to specify a time and the "KILLALL" keyword as the schedule. After
this, it will find any running scripts, screens, tmuxes, etc, on both the recording node, LCU, and
local node that are associated with scheduling and kill them. This should typically only be used in
the case that something has gone horribly wrong.

Interrupting Scheduled
Observations

Focused Mode

ilofar@LGC:~/workdir$ interruptObs.sh 2023-06-01T07:00:00 ./myschedule.txt
ilofar@LGC:~/workdir$ interruptObs.sh now ./myschedule.txt
ilofar@LGC:~/workdir$ interruptObs.sh now ~/scheduling/schedules/staged/sched_2023-06-01.txt
ilofar@LGC:~/workdir$ interruptObs.sh next ~/scheduling/schedules/staged/sched_2023-06-01.txt
schedule_replacement.txt

Global Mode

ilofar@LGC:~/workdir$ interruptObs.sh 2023-06-01T07:00:00 KILLALL
ilofar@LGC:~/workdir$ interruptObs.sh now KILLALL

https://linux.die.net/man/1/date

The GPUs in ucc4 are typically used to reduce the majority of the pulsar data produced by the
station into mode 5, 8x channelised, 16x downsampled Sigproc Stokes I filterbanks. This is
achieved through using a python3 script, cdmtProc.py , to produce a bash script with the correct
flags needed to call CDMT with maximum performance, while not overutilising the GPU's VRAM.

The script needs to be provided a path to the recording folder, and optionally an extension to add
to the file name. The resulting bash script can then be executed. Once data is analysed, the
compress.sh and transfer.sh scripts can be used to compress the raw data using zstandard , then
transfer it to the DIAS archive.

Two scripts in the /mnt/ucc4_data2/data/David/ directory can be used to setup single pulse searches.

Processing Pulsar Data
CDMT (Stokes I) Method

obs@ucc4:~$ tmux new
obs@ucc4:~$ dckrgpu

root@b02cf5b93fbc:/home/user# cd /mnt/ucc4_data2/data/David/
root@b02cf5b93fbc:/mnt/ucc4_data2/data/David# mkdir rrat_2023_05_30
root@b02cf5b93fbc:/mnt/ucc4_data2/data/David# cd rrat_2023_05_30
root@b02cf5b93fbc:/mnt/ucc4_data2/data/David/rrat_2023_05_30# cp ../cdmtProc.py ./
root@b02cf5b93fbc:/mnt/ucc4_data2/data/David/rrat_2023_05_30# python3 cdmtProc.py -i
/mnt/ucc1_recording2/data/rrats/2023_05_30/ --extra 1
root@b02cf5b93fbc:/mnt/ucc4_data2/data/David/rrat_2023_05_30# ll
total 92
drwxr-xr-x 2 root root 4096 May 30 15:48 ./
drwxr-xr-x 129 1000 1000 69632 May 30 15:47 ../
-rw-r--r-- 1 root root 14501 May 30 15:47 cdmtProc.py
-rw-r--r-- 1 root root 886 May 30 15:48 cdmtProc_1.sh
root@b02cf5b93fbc:/mnt/ucc4_data2/data/David/rrat_2023_05_30# bash cdmtProc_1.sh

<data is processed>

root@b02cf5b93fbc:/mnt/ucc4_data2/data/David/rrat_2023_05_30# bash ../compress.sh; bash ../transfer.sh

Single Pulse, Periodic Emission Searches

The generateHeimdall.py script will open a number of matplotlib interfaces with bandpasses for RFI
flagging before writing a list of narrow and wide DM searches for single pulses data. When flagging
the data, each click on the bandpass will flag a subband worth of data (8 channels), and a range of
subbands can be flagged by clicking somewhere, moving the mouse to the end of the range, then
pressing "a" with the window active. The output script will be in the cands/ subdirectory of the
input folder.

The candidate files are then used to generate plots of each pulse that fits certain criteria (typically
SNR > 7.5, width < 2**10 samples). This process is automated with the frb_v4.py and
generateCands.py scripts.

The generatePrepfolds.py script will generate a list of rfifind and prepfold commands for both set
targets, and targets within 1 degree of the original pointing. The output script will be in the folds/
subdirectory of the input folder.

Single pulse candidates and folded profiles can then be copied locally, with folded profiles
converted from ps files to png using the grabFolds.sh script.

For full Stokes IQUV data, we use udpPacketManager to convert the raw CEP data into a DADA data
block, which is then processed with digifil . The script for automating this need to be modified to
contain a dispersion measure for coherent dedispersion, and a downsampling fact for the data.
Afterwards, the script can be run, pointed at a specific directory, and it will handle the rest for you.

dmckenna@ucc2:/mnt/ucc2_data1/data/dmckenna/working_cands$ mkdir rrat_2023_05_30
dmckenna@ucc2:/mnt/ucc2_data1/data/dmckenna/working_cands$ cd rrat_2023_05_30
dmckenna@ucc2:/mnt/ucc2_data1/data/dmckenna/working_cands/rrat_2023_05_30$ cp ../frb_v4.py .
dmckenna@ucc2:/mnt/ucc2_data1/data/dmckenna/working_cands/rrat_2023_05_30$ for i in {1..4}; do
python3.8 ../generateCands.py -i /mnt/ucc4_data2/data/David/rrat_2023_05_30/ -o proc_ucc4_${i}.sh; bash
proc_ucc4_${i}.sh; sleep 3600; done

udpPacketManager /digifil (Stokes IQUV)
Method

obs@ucc1:~$ tmux new
obs@ucc1:~$ bash /mnt/ucc1_recording2/data/rrats/4pol/enter_docker.sh

root@106316e58e36:/home/user# cd /mnt/ucc1_recording2/data/rrats/2023_05_30/
root@106316e58e36:/mnt/ucc1_recording2/data/rrats/2023_05_30# mkdir tmp_processing
root@106316e58e36:/mnt/ucc1_recording2/data/rrats/2023_05_30# cd tmp_processing
root@106316e58e36:/mnt/ucc1_recording2/data/rrats/2023_05_30/tmp_processing# cp ../../4pol/* ./
root@106316e58e36:/mnt/ucc1_recording2/data/rrats/2023_05_30/tmp_processing# bash 4pol_generate.sh

Alternatively,
root@106316e58e36:/home/user# cd /mnt/ucc1_recording2/data/rrats/prcoessing/
root@106316e58e36:/mnt/ucc1_recording2/data/rrats/processing# mkdir 2023_05_30
root@106316e58e36:/mnt/ucc1_recording2/data/rrats/processing# cd 2023_05_30
root@106316e58e36:/mnt/ucc1_recording2/data/rrats/processing/2023_05_30# cp ../../4pol/* ./
root@106316e58e36:/mnt/ucc1_recording2/data/rrats/processing/2023_05_30# bash 4pol_generate.sh
/mnt/ucc1_recording2/data/rrats/2023_05_30/

Solar data is typically processed using udpPacketManager, to produce a Stokes IV output,
downsampled by a factor of 256 to 1.3ms, using a set of automated scripts.

The process_data.sh script can be set to process any subdirectories with data on a specific path, or
will automatically find the newest directory of observations, and process any Solar observations.

The series of commands needed to setup a processing run can be found in the code block below.

Processing Solar Data
(Basic)
UPM Method

obs@ucc1:~$ cdrs
obs@ucc1:/mnt/ucc1_recording2/data/sun$ mkdir 20230530_sun357
obs@ucc1:/mnt/ucc1_recording2/data/sun$ cd 20230530_sun357
obs@ucc1:/mnt/ucc1_recording2/data/sun/20230530_sun357$ cp ../templates/* ./
obs@ucc1:/mnt/ucc1_recording2/data/sun/20230530_sun357$ bash enter_docker.sh

root@2639bfd271d6:/home/user# cd $LAST_DIR
root@2639bfd271d6:/mnt/ucc1_recording2/data/sun/20230530_sun357# bash process_data.sh

Alternatively
root@2639bfd271d6:/home/user# cd $LAST_DIR
root@2639bfd271d6:/mnt/ucc1_recording2/data/sun/20230530_sun357# bash process_data.sh
/mnt/ucc1_recording2/data/rrats/2023_05_30/

After processing
root@2639bfd271d6:/mnt/ucc1_recording2/data/sun/20230530_sun357# exit
obs@ucc1:/mnt/ucc1_recording2/data/sun/20230530_sun357$ bash transfer.sh

Processing Other Data
(EMPTY)
UPM Method

Bash Aliases
LGC

$ # Access the LCU while in local mode
$ lcu

$ # Access the Recording node (ucc1)
$ ucc1

$ # Access the scheduling directory
$ sched

$ # Test a schedule file
$ testsched my_input_file.txt

UCC1
$ # Access recording drive 1 (old)
$ cdr
$ # Access the active recording drive
$ cdr2

$ # View the remaining storage on the recording drives
$ dfr

$ # See the disk usage of the current subdirectories
$ duds

$ # Access the recorded observations directory
$ cdo
$ # Access the last recorded observation

$ cdol

$ # Access the RRATs processing directory (old recording directory)
$ cdrr
$ # Access the latest RRAT directory
$ cdrrl

$ # Access the Solar processing directory
$ cdrs
$ # Access the latest Solar directory
$ cdrsl

