
An overall description of the output products of an international LOFAR station, and pointing out
the small details that are left out of the cookbook.
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Most of the information in this chapter can be found within the LOFAR Station Cookbook, though
there are a few other handy additions regarding the output formats that can be of interest. We will
also discuss the current methogology for handling the data products and converting them to other
formats, if needed.

Introduction

https://lofar.ie/wp-content/uploads/2018/03/station_data_cookbook_v1.2.pdf


Array correlation/crosslet statistics statistics (XSTs) describe the autocorrelation between different
antenna for a single subband at a given point in time (visibilities, covariances). A single XST file
contains a single subband's data, which differs from a ACC file which loops over a range of
subbands. They can be used to generate all-sky maps, a representation of the sky birghtness
distribution of the station at a given frequency.

XSTs are generated using the rspctl  command while the station is in  swlevel 2  , a known mode is
set by  rspctl --mode=N   or rspctl --band=N_M  and the station is expected to be in bitmode 16 as no
other observations can be performed simultaneously. It will generate an output intergrated over
the last Nsec  to a file in a given local_folder . The overall syntax to generate an output for a given 
subband  is

It is recommended to run this in combination with a script that will move the file to a new location
after Nobservation_sec as the file contains no metadata of the mode or subband used for the
observation. Moving to a specified modeN/sbM/ subband is highly recommend as a result. A sample
observing script, assuming the station is in swlevel 2  can be found here. 

Due to the rigid tile structure of the HBAs aligning the side lobes, performing all-sky observations
with the entire HBA array is a hopeless endeavour. 

However, at the GLOW stations, James Anderson worked around this by activating a single antenna
in each HBA tile in a pesudo-random fashion to minimise sidelobe collision. Further work on the
methodology by Menno Norden and Michiel Brentjens optimized this method and resulted in the
script found here, slightly modified for use on the Irish station, which will automate the process for
you. It should be run before any attempts to perform all-sky observations with the HBA tiles.

XST Data

Generating XSTs

user1@lcu$ rspctl --xcsubband=subband
user1@lcu$ rspctl --xcstatistics --duration=n_observation_seconds --integration=n_sec --directory=local_folder

A note on HBA all-sky observations

XST Data Format

https://github.com/David-McKenna/allSkyImaging/blob/master/observationScripts/dmck_xst_generic_mode.sh
https://raw.githubusercontent.com/David-McKenna/allSkyImaging/master/observationScripts/dmck_set_HBA_single_element_pattern_IE613.py
https://raw.githubusercontent.com/David-McKenna/allSkyImaging/master/observationScripts/dmck_set_HBA_single_element_pattern_IE613.py


XSTs are antenna-majour files that are written to disk every integration period. They do not come
with any metadata outside of the starting time, which is present in the file name.

Each sample is 4 x Nantenna  x Nantenna  long (by default, an international station has 96 antenna). 
Each antenna generates a real and imaginary sample for it's correlation with every other antenna
(Complex128 type, 2 Float64s, for each polarization). As a result, at the (n,n) indictes we generate
the autocorrelation of the antenna with no lag. The overall format can be thought of as a 3D cube,
with (n,n) squares stacked for m time samples.

(N0,N0) (N0,N1) ... (N0,Nn)

(N1,N0) (N1,N1)    

...   ...  

(Nn,N0)     (Nn,Nn)

Some sample mode 3, subband 210 data from IE613 can be found here. it is highly recommended
to use an existing implementation for generating all-sky images, I provide the example David
worked on here, but there is also Griffin Foster's SWHT, a module inside Tobia Carozzi's iLiSA and
some scripts floating around the LOFAR community.

The method for generating all-sky maps is heavily involed and as a result we will only outline the
steps involved here.

Acquire XST data, antenna locations and (optionally) calibrations files for your station
Load your data and metadata into an eniroment, samples for XST and calibrtion data,

All-Sky Plotting

xstData = np.fromfile(dataRef, dtype = np.complex128)
reshapeSize = xstData.size / (192 ** 2)
xstData = xstData.reshape(192, 192, reshapeSize, order = 'F')

calData = np.fromfile(calRef, dtype = np.complex128)
rcuCount = calVar.size / 512
calData = calData.reshape(rcuCount, 512, order = 'F')
calData = calData[:, subband_of_interest]

calXData = calData[::2]
calYData = calData[1::2]

https://github.com/David-McKenna/allSkyImaging/tree/master/sampleDataMode3
https://github.com/David-McKenna/allSkyImaging/
https://github.com/David-McKenna/allSkyImaging/
https://github.com/griffinfoster/SWHT
https://github.com/2baOrNot2ba/iLiSA/blob/8351e5c1eca3637ca1957ca24ccb4560dc7cc353/ilisa/calim/imaging.py
https://github.com/brentjens/lofar-antenna-positions


Apply your calibrations if needed to each of the X/Y polarizations

Generate a range of pointings from sin(-pi/2) -> sin(+pi/2) across a grid, lower values will
limit your field of view ((l,m) grid size)
Calculate your wavelength and corresponding wavenumber for your subband (k = (2 * np.pi) 
/ wavelength)
Form a weight matrix (and it's conjugate) for your pointing using the x-coordinates and y-
coordinates of your antennae

For each sample of correlations, find the dot product of the correations with the complex
conjugate of your weight matrix, and then the weight matrix

Your output image will need to be rotated by the same mount as your station is rotated. You can
find that information within the new iHBADeltas.conf files.

calData = np.dstack([calXData, calYData])

calSubbandX = calData[:, subband, 0]
calSubbandY = calData[:, subband, 1]

calMatrixXArr = np.outer(calSubbandX, np.conj(calSubbandX).T)[..., np.newaxis]
inputCorrelations[::2, ::2, ...] = np.multiply(np.conj(calMatrixXArr), inputCorrelations[::2, ::2, ...])

calMatrixYArr = np.outer(calSubbandY, np.conj(calSubbandY).T)[..., np.newaxis]
inputCorrelations[1::2, 1::2, ...] = np.multiply(np.conj(calMatrixYArr), inputCorrelations[1::2, 1::2, ...])

wX = np.exp(-1j * k * posX * lVec) # (l, 96)
wY = np.exp(-1j * k * posY * mVec) # (m, 96)
weight = np.multiply(wX[:, np.newaxis, :], wY[:, :, np.newaxis]).transpose((1,2,0))[..., np.newaxis] # (l,m,96,1)
conjWeight = np.conj(weight).transpose((0,1,3,2)) # (l,m,1,96)

for frame in np.arange(frameCount):
	correlationMatrixChan = correlationMatrix[..., frame] # (96,96)
	tempProd = np.dot(conjWeight, correlationMatrixChan) # w.H * corr # (l,m, 1, 96)
	prodProd = np.multiply(tempProd.transpose((0,1,3,2)), weight)
	outputFrame[..., frame] = np.sum(prodProd, axis = (2,3))



Beamlet statictics (BSTs) are effectively dyanmic spectra produced by the station at a regular,
relatively low cadence, interval.

BSTs are generated using the rspctl  command in conjunction with a running beamctl  command (as
a result, the station must be in at least swlevel 3 ). It will write an output summary of the last Nsec 
(int) of antenna correlations to disk in a given folder_location. The overall synctax to call a rspctl
command is

The rspctl  command will generate data for Nobservation_sec  or until the process is killed. As a result,
the process must be kept active in a screen or by trailing the execution with an ampersand to send
it to the background.

Enabling BST generation with the rspctl  command will disable the CEP packet data stream, which
can be re-enabled afterwards by calling $ rspctl --datastream=1  . You can verify this worked by
calling $ rspctl --datastream  to get the current status of the datastream. 

BSTs are frequency-majour files that are written to disk every integration period. They do not come
with any metadata outside of the stating time, output ring (only 0 available to international
stations) and antenna polarization which are visible within the file name.

Each beamlet controlled by a beamctl  command will generate a single output sample per
intergration. So the output array dimensions will depend on your observation, and may be up to
244 in 16-bit mode, 488 in 8-bit mode and 976 in 4-bit mode.

The output data is a float, 4 times the size of your input.

Bitmode Output (float)

4 float32 (verify)

BST Data

Generating BSTs

user1@lcu$ rspctl --statistics=beamlet --duration=n_observation_sec --integration=n_sec --
directory=folder_location/

BST Data Format



8 float64

16 float128

A fast way to plot BSTs in Python can be achieved with the numpy and matplotlib libraries. If you
want to test this out for yourself, there are a large number of BSTs available on the data.lofar.ie  
archive which contain 488 subband observations from our Solar monitoring campaign.

BST Plotting

import numpy as np
import matplotlib.pyplot as plt

bstLocation = "/path/to/bst.dat"
#bstDtype = np.float32 # 4-bit obs
#bstDtype = np.float64 # 8-bit obs
#bstDtype = np.float128 # 16-bit obs
rawData = np.fromfile(bstLocation, dtype = bstDtype)

#numBeamlets = 976 # 4-bit obs
#numBeamlets = 488 # 8-bit obs
#numBeamlets = 244 # 16-bit obs
rawData = rawData.reshape(-1, numBeamlets)

plt.figure(figsize=(24,12))
plt.imshow(np.log10(rawData.T), aspect = "auto")
plt.xlabel("Time Samples"); plt.ylabel("Subband"); plt.title("BST Data ({})".format(bstLocation))
plt.show()

https://data.lofar.ie/


Array correlation/crosslet statistics statistics (ACCs) describe the autocorrelation between different
antenna for a number of subbands across a period of time (visibilities, covariances). A single ACC
file typically contains one or more scans across the entire subband range of an observing mode,
which differs from a XST file which only observed a single subband. They can be used to generate
all-sky maps, a representation of the sky brightness distribution of the station at a given frequency,
though typically ACCs are used for station debugging and calibration

ACCs are generated using the rspctl  command while the station is in  swlevel 2  , a known mode is
set by  rspctl --mode=N   or rspctl --band=N_M  and the station is expected to be in bitmode 16 as no
other observations can be performed simultaneously. It will generate an output integrated over the
last Nsec  to a file in a given local_folder . The overall syntax to generate an output is

This differs from XSTs as no subband is specified.  It is recommended to keep the observing mode
in the local_folder  name due to the lack of metadata associated with the observation.

You are also recommended to check in with your observer or station configuration to see the
subbands the scan will be performed over. While by default, this covers every subband in a given
mode before looking, your configuration may have changed and only use a limited subset of
frequency channels.

Due to the rigid tile structure of the HBAs aligning the side lobes, performing all-sky observations
with the entire HBA array is a hopeless endeavour. 

However, at the GLOW stations, James Anderson worked around this by activating a single antenna
in each HBA tile in a pesudo-random fashion to minimise sidelobe collision. Further work on the
methodology by Menno Norden and Michiel Brentjens optimized this method and resulted in the
script found here, slightly modified for use on the Irish station, which will automate the process for
you. It should be run before any attempts to perform all-sky observations with the HBA tiles.

ACC Data

Generating ACCs (Validation Required)

user1@lcu$ rspctl --xcstatistics --duration=n_observation_seconds --integration=n_sec --directory=local_folder

A note on HBA all-sky observations

ACC Data Format (Validation Required)

https://raw.githubusercontent.com/David-McKenna/allSkyImaging/master/observationScripts/dmck_set_HBA_single_element_pattern_IE613.py
https://raw.githubusercontent.com/David-McKenna/allSkyImaging/master/observationScripts/dmck_set_HBA_single_element_pattern_IE613.py


ACCs are antenna-major files that are written to disk every integration period for each subband.
They do not come with any metadata outside of the starting time, which is present in the file name.

Each sample is 4 x Nsubbands x Nantenna  x Nantenna  long (by default, an international station has 96
antenna). Each antenna generates a real and imaginary sample for it's correlation with every other
antenna (Complex128 type, 2 Float64s, for each polarization). As a result, at the (n,n) indictes we
generate the autocorrelation of the antenna with no lag. The overall format can be thought of as a
3D cube, with (n,n) squares stacked for m time samples.

(N0,N0) (N0,N1) ... (N0,Nn)

(N1,N0) (N1,N1)    

...   ...  

(Nn,N0)     (Nn,Nn)

Each sample above is the index of 2 Complex128 values, for each polarizations of an antenna pair,
giving an overall dimension of (192, 192) Complex128 elements for a standard international
station.

See the "XST Data" page for an explanation on using these data products for all-sky maps.



The CEP packet stream is the lowest level, constantly produced data product from the station. It is
a series of UDP packets that provide information on the digitized voltages for a given antenna while
a beamformed observaiton is performed. There are normally 4 ports of data produced, though this
may be lower if you are not fully utilizing the beamlets available to your station.

The CEP packet stream is highly variable, based on both your observing setup and your RSP
configuration ( /var/lofar/etc/RSPDriver.conf ), we will describe this format as generic as ossible and
provide default values for an international station.

The CEP packet stream should be generated whenever a beamformed observation is started via 
beamctl , though your station ocnfiguration or the use of  rspctl  to create BST data may interrupt or
stop the data stream. You can verify the stream is enabled through the  rspctl --datastream
command, and re-enable it by calling  rspctl --datastream=1 . 

While enabled, the CEP packet stream will send data to the MAC addresses configured in your 
RSPDRiver.conf  every N time samples (by default, 16, 81.92µs) on all ports; though some ports may
not contain data if the beamlets are not allocated. The subbands are distributed as described below
(values are always inclusive).

Port Offset 4-bit Data 8-bit Data 16- bit Data

0 0:243 0:121 0:60

1 244:487 122:243 61:121

2 488:731 244:365 122:182

3 732:975 366:487 183:243

As the packets are UDP packets, the data may arrive at your machine out of order or not arrive at
all. Packet loss to on-site machines is normally relatively low and in-order, so performing operations
on the raw recorded data should be fine for more cases.

CEP Packet Stream

Generating the CEP Packet Stream

CEP Packet Data Format



The full CEP packet is described on page 32 of the Station Cookbook, but for now we will focus in
on the CEP header, without any of the UDP information, and the raw data

There are 16 bytes of relelvant information at the start of every CEP packet. While it doesn't
provide as much metatdata as we wouldl ike, it gives a good starting point for validation the
structure of a packet and some of the base observing parameters.

Parameter Byte(:bit) Usage

RSP Version 0 Validation (~=3)

Source Info 1-2 Observing Configuration

    RSP ID 1:0-4 (5-bit) Output RSP ID

    Unused 1:5 (1-bit) Validate 0

    RSP Error 1:6 (1-bit) RSP Error, validate 0

    Clock Bit 1:7 (1-bit) 1 if 200MHz clock, 0 if 160MHz

    Bit mode 2:0-1 (2-bit) 0: 16-bit, 1: 8-bit: 2: 4-bit, 3: ERR

    Unused 2:2-7 (6-bit) Vaidate 0

Config 3  

Station ID 4-5 Station Code (see below)

Number of beamets 6 Beamlets in the current packet

Number of time
samples

7 Time samples in the current packet (normally 16)

Timestamp 8-11 Unix timestamp of observation

Sequence 12-15 Leading time sample sequence

The actual packet size can vary based on the observing methodology. You can predict the size of
each packet, and the raw data deminsions as a result, from the number of beamlets and number of
time samples (bytes 6 and 7).

The reported statino code does not correspond to the public station names, I.e. IE613, SE607, etc.
The RSPs report the internal station code, multiplied by 32, with an offset depending on the output
port. The full list of station codes can be found here. As an example, if we were to analyse the short
value produced from IE613, we would expect to see (214 * 32) + (0,1,2,3) depending on the CEP

https://lofar.ie/wp-content/uploads/2018/03/station_data_cookbook_v1.2.pdf
https://git.astron.nl/ro/lofar/-/raw/master/MAC/Deployment/data/StaticMetaData/StationInfo.dat


port analysed.

The data is then in time-majour order, where each time sample contains the (Xreal, Ximag, Yreal,
Yimag) samples. Size of each sample depends on your bitmode, varying from half a byte (4-bit) to
2 bytes (16-bit). This repeats for Ntime sampels (default is 16), before moving on to the next
beamlet. 

Recording / Handling Methodology
This is discussed more in-dept within the REALTA user's guide where we describe the methodology
used at IE613. The overall view is that the data should be

Recorded with some UDP packet capturing software -- wireshark, Olaf Wucknitz's volage
recorder, etc.
Data is read back either blindly or checking for missing packets, out of sequence data,
headers analyzed, etc
Voltages can be used to form Stokes vectors to the output data product required



TBB Data (Empty)



SST Data (Empty)


