
Array correlation/crosslet statistics statistics (XSTs) describe the autocorrelation between different
antenna for a single subband at a given point in time (visibilities, covariances). A single XST file
contains a single subband's data, which differs from a ACC file which loops over a range of
subbands. They can be used to generate all-sky maps, a representation of the sky birghtness
distribution of the station at a given frequency.

XSTs are generated using the rspctl command while the station is in swlevel 2 , a known mode is
set by rspctl --mode=N or rspctl --band=N_M and the station is expected to be in bitmode 16 as no
other observations can be performed simultaneously. It will generate an output intergrated over
the last Nsec to a file in a given local_folder . The overall syntax to generate an output for a given
subband is

It is recommended to run this in combination with a script that will move the file to a new location
after Nobservation_sec as the file contains no metadata of the mode or subband used for the
observation. Moving to a specified modeN/sbM/ subband is highly recommend as a result. A sample
observing script, assuming the station is in swlevel 2 can be found here.

Due to the rigid tile structure of the HBAs aligning the side lobes, performing all-sky observations
with the entire HBA array is a hopeless endeavour.

However, at the GLOW stations, James Anderson worked around this by activating a single antenna
in each HBA tile in a pesudo-random fashion to minimise sidelobe collision. Further work on the
methodology by Menno Norden and Michiel Brentjens optimized this method and resulted in the
script found here, slightly modified for use on the Irish station, which will automate the process for
you. It should be run before any attempts to perform all-sky observations with the HBA tiles.

XST Data

Generating XSTs

user1@lcu$ rspctl --xcsubband=subband
user1@lcu$ rspctl --xcstatistics --duration=n_observation_seconds --integration=n_sec --directory=local_folder

A note on HBA all-sky observations

XST Data Format

https://github.com/David-McKenna/allSkyImaging/blob/master/observationScripts/dmck_xst_generic_mode.sh
https://raw.githubusercontent.com/David-McKenna/allSkyImaging/master/observationScripts/dmck_set_HBA_single_element_pattern_IE613.py
https://raw.githubusercontent.com/David-McKenna/allSkyImaging/master/observationScripts/dmck_set_HBA_single_element_pattern_IE613.py

XSTs are antenna-majour files that are written to disk every integration period. They do not come
with any metadata outside of the starting time, which is present in the file name.

Each sample is 4 x Nantenna x Nantenna long (by default, an international station has 96 antenna).
Each antenna generates a real and imaginary sample for it's correlation with every other antenna
(Complex128 type, 2 Float64s, for each polarization). As a result, at the (n,n) indictes we generate
the autocorrelation of the antenna with no lag. The overall format can be thought of as a 3D cube,
with (n,n) squares stacked for m time samples.

(N0,N0) (N0,N1) ... (N0,Nn)

(N1,N0) (N1,N1)

... ...

(Nn,N0) (Nn,Nn)

Some sample mode 3, subband 210 data from IE613 can be found here. it is highly recommended
to use an existing implementation for generating all-sky images, I provide the example David
worked on here, but there is also Griffin Foster's SWHT, a module inside Tobia Carozzi's iLiSA and
some scripts floating around the LOFAR community.

The method for generating all-sky maps is heavily involed and as a result we will only outline the
steps involved here.

Acquire XST data, antenna locations and (optionally) calibrations files for your station
Load your data and metadata into an eniroment, samples for XST and calibrtion data,

All-Sky Plotting

xstData = np.fromfile(dataRef, dtype = np.complex128)
reshapeSize = xstData.size / (192 ** 2)
xstData = xstData.reshape(192, 192, reshapeSize, order = 'F')

calData = np.fromfile(calRef, dtype = np.complex128)
rcuCount = calVar.size / 512
calData = calData.reshape(rcuCount, 512, order = 'F')
calData = calData[:, subband_of_interest]

calXData = calData[::2]
calYData = calData[1::2]

https://github.com/David-McKenna/allSkyImaging/tree/master/sampleDataMode3
https://github.com/David-McKenna/allSkyImaging/
https://github.com/David-McKenna/allSkyImaging/
https://github.com/griffinfoster/SWHT
https://github.com/2baOrNot2ba/iLiSA/blob/8351e5c1eca3637ca1957ca24ccb4560dc7cc353/ilisa/calim/imaging.py
https://github.com/brentjens/lofar-antenna-positions

Apply your calibrations if needed to each of the X/Y polarizations

Generate a range of pointings from sin(-pi/2) -> sin(+pi/2) across a grid, lower values will
limit your field of view ((l,m) grid size)
Calculate your wavelength and corresponding wavenumber for your subband (k = (2 * np.pi)
/ wavelength)
Form a weight matrix (and it's conjugate) for your pointing using the x-coordinates and y-
coordinates of your antennae

For each sample of correlations, find the dot product of the correations with the complex
conjugate of your weight matrix, and then the weight matrix

Your output image will need to be rotated by the same mount as your station is rotated. You can
find that information within the new iHBADeltas.conf files.

calData = np.dstack([calXData, calYData])

calSubbandX = calData[:, subband, 0]
calSubbandY = calData[:, subband, 1]

calMatrixXArr = np.outer(calSubbandX, np.conj(calSubbandX).T)[..., np.newaxis]
inputCorrelations[::2, ::2, ...] = np.multiply(np.conj(calMatrixXArr), inputCorrelations[::2, ::2, ...])

calMatrixYArr = np.outer(calSubbandY, np.conj(calSubbandY).T)[..., np.newaxis]
inputCorrelations[1::2, 1::2, ...] = np.multiply(np.conj(calMatrixYArr), inputCorrelations[1::2, 1::2, ...])

wX = np.exp(-1j * k * posX * lVec) # (l, 96)
wY = np.exp(-1j * k * posY * mVec) # (m, 96)
weight = np.multiply(wX[:, np.newaxis, :], wY[:, :, np.newaxis]).transpose((1,2,0))[..., np.newaxis] # (l,m,96,1)
conjWeight = np.conj(weight).transpose((0,1,3,2)) # (l,m,1,96)

for frame in np.arange(frameCount):
	correlationMatrixChan = correlationMatrix[..., frame] # (96,96)
	tempProd = np.dot(conjWeight, correlationMatrixChan) # w.H * corr # (l,m, 1, 96)
	prodProd = np.multiply(tempProd.transpose((0,1,3,2)), weight)
	outputFrame[..., frame] = np.sum(prodProd, axis = (2,3))

Revision #5
Created 1 July 2020 16:44:15 by David
Updated 3 July 2020 19:47:47 by David

