
The standardised methods for processing I-LOFAR data produts

Single Pulse Source Observations
LuMP Processing
PRESTO Timing
Timing With Tempo2 (Empty)
Processing Non-Pulse-Based Observations
Getting TOA Measurements from Single Pulses

Processing
Methodologies

FRBs and RRats are highly transient by their nature. As a result, we could see a single peak in a 10
hour observation. While keeping the raw voltages on hand can help with re-processing
observations to avoid missing features due to issues in the current methodology, we no longer
have the storage space on the UCC processing nodes or NUIG1.

Proposed methodology for processing single pulse observations observations:

Process the observation with CDMT. Produce both a 0-DM and N-DM filterbank at the
nominal time resolution (currently 655.36us, 16x ts, 8x chan)
Perform RFI detection on the 0DM filterbank

We currently do not have a strong methodology here, apart from bandpass analysis
and rfifind for detecting DM=0 features

Search this output after an 8-bit decimation from digifil
Log the heimdall commands used, RFI channels flagged
Investigate the optimal scale timescale for digifil (-I, default 10s) for FRBs; some are
expected to last up-to or over 1 second at our frequencies due to scattering.

After a search is complete, archive the CDMT filterbanks
Digifil: 2x ts for further space savings if needed, mostly a layover from previous 8x
tsch

-I 0 : No scale changes, raw 2:1 conversion
-b-32 : Float32 output, no change from raw filterbank
-t 2 : Down sample to 655us resolution

Compressed with zstandard: Further 10-20% compound storage saved

There are a few ways that this methodology could be changed to make the resulting filterbanks
easier to search + store, or improve SNR

Future changes
Chop bandwidth? Top 5MHz / Bottom 7 are Nyquist suppressed + RFI
contaminated

Removing these could save us 15% of storage and speed up processing as
searching the last 10MHz introduces an addition delay of 25 seconds @ R3's
DM
No easy way to do this with the current voltage extraction/processing method,
would need to be after the filterbanks are formed

Investigate having CDMT split filterbanks every N samples
Consider overlap requirements to not miss signals on the boundaries

Single Pulse Source
Observations

Duplicated data, but higher theoretical SNR when we can include more
channels by more selective RFI flagging
Or just find a decent RFI flagging algo...

We note that for RRats, we do not recommend forming a 0DM filterbank as those sources often do
not need validation as they should be bright enough to be obvious with/without coherent
dedispersion.

Step Method Storage Used Product Overall on Disk

Generate Voltages Observer 1 1

Compressed zstandard, Olaf's
recorder

~0.6-0.8 0.6 0.6

CDMT -a -b 16 -d 0,DM,2 0.125 0.125 0.725

Digifil (Search) -b 8 -I <DECIDE> 0.03125 0.03125 0.75625

Cleanup: Digifil
(search)

rm -0.03125 -0.03125 0.725

Compress CDMT
(compress)

zstandard ~0.1 0.1 0.825

Cleanup: Voltages,
CDMT

rm -0.6 - 0.125 -0.725 0.1

Overall ~100 GB/obs-hr

An alternative recording method for some observations is with the LuMP software from MPIfRA. It
has been used in the past for coordinated observations with FR606 and at the request of observers
from the UK and Poland.

Any DSPSR sub-program (dspsr, digifil, digifits) can be used to process a LuMP observation, but
each port/process (if using a multi-processed recording mode) must be processed separately and
then combined (fils: filmerge, fits/ar: psradd).

So as an example, to process with digifil you may choose to process a set of observations using the
command

To perform coherent dedispersion (-F <CHAN>:D) for a known pulsar target (inside LuMP metadata),
without any bandpass/temporal offsets (-I 0 -c), producing a 32-bit output (-b-32) filterbank.

Many issues arise with modern versions of DSPSR when processing raw data, not limited to the
dedispersion kernel failing, the default filterbank failing, misaligned folds when directly processing
with DSPSR, etc. As a result we use a modified version of the workflow presented above for
processing a typical LuMP observation.

LuMP Processing

for file in *.raw; do
	digifil -b-32 -F <NUMCHAN>:D -I 0 -c -set site="I-LOFAR" $file -o $file".fil"
done

filmerge *.raw.fil

baseName=$1

Process the raw data with digifil. Perform 8x channelisation, 2x time scrunching (tsamp ~ 81us)
Fake machine to COBALT as sigproc's filmerge will refuse to merge fils if the header is FAKE
for fil in *.00.raw; do digifil -b-32 -I 0 -c $fil -set machine=COBALT -set site=I-LOFAR -t 2 -F 328:1 -o $fil".fil" &
echo "hi" ; done; wait;
for fil in *.01.raw; do digifil -b-32 -I 0 -c $fil -set machine=COBALT -set site=I-LOFAR -t 2 -F 328:1 -o $fil".fil" &
echo "hi" ; done; wait;
for fil in *.02.raw; do digifil -b-32 -I 0 -c $fil -set machine=COBALT -set site=I-LOFAR -t 2 -F 320:1 -o $fil".fil" &
echo "hi"; done; wait;

Each port should have the same number of samples and starting MJD; merge each of them

filmerge ./udp16130*raw.fil -o "./udp16130_"$baseName".fil"
filmerge ./udp16131*raw.fil -o "./udp16131_"$baseName".fil"
filmerge ./udp16132*raw.fil -o "./udp16132_"$baseName".fil"
filmerge ./udp16133*raw.fil -o "./udp16133_"$baseName".fil"

for fil in udp*"$baseName".fil; do digifil -b 8 $fil -o $fil"_8bit.fil"; done

Fold the data, 1024 bins, ~3 secnd integration (change turns as needed)
for fil in *_8bit.fil; do dspsr -turns 4 -nsub 512 -t 4 -b 1024 -skz -skzn 4 -k IelfrHBA -O $fil"_fold" $fil; done

Attempt to combine the data. This will not work 90% of the time due to packet loss, but worth trying.
psradd -R *.ar -f $baseName".ar"

PRESTO can be used for generating timing files for use with tempo(2).

To start, a standard prepfold command should be run, though to use the output archives for timing
the -nosearch flag must be used, as a result you will need a well-timed target (good entry in psrcat)
or an existing ephemeris file on hand for the folding.

Once you have a -nosearch pfd generated, you can use the get_TOAs.py script to generate TOA .tims
to process with tempo(2).

PRESTO Timing

Timing With Tempo2
(Empty)

The backend used for CDMT is also available in a CLI, lofar_udp_extractor , which is installed on the
Docker containers available on the REALTA nodes.

This guide assumes you have a UDP recording (compressed or uncompressed) from Olaf Wucknitz's
VLBI recording program (standard for observing with I-LOFAR) and will explain the standard
operating modes, and workarounds for issues with the lofar_udp_extractor program. The full, up to
date documentation for the CLI can be found here.

This sets up the program to take a compressed ZST file, starting at port 16130 and iterating up to
port 16133, outputting to the provided location in a set processing mode. Some processing modes
have multiple outputs, and will require '%d' to be in the output name as a result. The most useful
processing modes are

Mode ID Output (Stokes) Tsamp (us) Outputs

100 I 5.12 1

104 I 81.92 1

150 I, Q, U, V 5.12 4

154 I, Q, U, V 81.92 4

160 I, V 5.12 2

164 I, V 81.92 2

Processing Non-Pulse-Based
Observations

Standard Usage
lofar_udp_extractor \
	-i /path/to/raw/udp_1613%d.TIMESTAMP.zst \
	-o /output/file/location \
	-p <procMode>

https://wiki.pulsar.observer/books/realta-users-guide/page/getting-started-with-docker-on-the-realta-nodes
https://github.com/David-McKenna/udpPacketManager/blob/master/docs/README_CLI.md
https://github.com/David-McKenna/udpPacketManager/blob/master/docs/README_CLI.md

Modes 150+ are only available in more recent versions, and may error out of the docker containers
have not been updated recently.

There are several other useful flags for processing data, such as -u <num> which will change the
number of ports of data processed in a given run, -t YYYY-MM-DDTHH:MM:SS -s <num> or -e <file> can
be used to extract a specific chunk of time, or specify a file with several time stamps and
extraction duration (with the requirement that these regions do not overlap).

The -a "flags" flag passes flags to mockHeader which generates a sigproc-compatible header of
metadata about the observation. This can make handling Stokes data easier later on, through the
use of sigpyproc for loading and manipulating data, though as of right now it is not possible to set a
per-subband frequency as is needed for mode357, so a dummy fch1 (central top frequency) and
foff (frequency offset between channels) should be used instead.

As an example, during a processing run on 29/10/20 of some Solar Mode357 data, the following
command was used.

When recording starts later than the supplied start time, Olaf's recorder may pick up stale packets
in the UDP cache and record them at the start of your observation. This will manifest itself as a
segfault when trying to process the start of an observation, as the program will run into
issues attempting to align the first packet on each port. As a workaround, use the -t YYYY-MM-
DDTHH:MM:SS flag to set a start time shortly after the actual data begins recording, at which point
the software will be able to accurately align the packets as needed,

lofar_udp_extractor \
	-i /mnt/ucc1_recording/data/sun/20201028_sun357/20201028090300Sun357/udp_1613%d.ucc1.2020-10-
28T09\:05\:00.000.zst \
	-o ./2020-10-28T09\:05\:00_mode357_StokesVector%d.fil \
	-p 164 \
	-a "-fch1 200 -fo -0.1953125 -tel 1916 -source sun_357"

Known Issues and Workarounds

https://github.com/David-McKenna/mockHeader
https://github.com/FRBs/sigpyproc3

This page describes the process to get a TOA measurement for a single pulse, assuming

You know the rough TOA of the pulse
The input data is a Sigproc Filterbank
DSPSR and PSRCHIVE (with GUI) are available

Many steps of this process are automated on REALTA using this python script[gist].

<getting the .ar>

We will use the paas tool to generate a noise free model, which will then be used for cross-
corrlation or other analysis methods to determine the pulse TOA. Choose your brightest or most
characteristic pulse and being the fitting process by running

Once loaded in, focus on the pulse itself by pressing z to set the left limit of a zoom, and left click
to select the right limit. Then, left click on the left and right edges of the pulse to set the phase
limits of the pulse, you will then be able to select the peak of the pulse vertically.

Once you have a rough model in the view, you can press f to iteratively update the model to the
data, continue to update the model until you believe a good fit of the amplitude and position of the
pulse has been achieved and the residuals of the region (red lines) are similar to the noise floor.

You can then quit by pressing q , this will save the model to disk as 3 files, paas.m (the model we
generated), paas.std (an archive profile containing the shape of the model) and paas.txt (an ASCII
copy of the model)

We will be using the paas.std file for determining the pulse TOAs.

Getting TOA Measurements
from Single Pulses

Generating a Noise-Free Model

paas 	-i \ # Interactive fitting
		-d /xwin # Visual GUI of choice
 <input .ar> # Input profile to use as a reference

Now that we have our archives and model, we can use pat to determine the pulse TOAs. We
typically perform this using the following command,

The output timing file can the be used for analysis in tempo2.

Determining Pulse TOAs using the Noise-
Free Model

pat 	-f tempo2 \ # Output in the tempo2 format
		-A PIS \ # Generate cross correlations using the Parabolic interpoaltion method, chosen for the it's performance
on a test dataset from J2215+45
 -F \ # Sum across frequencies before determining TOA
 -m <paas model>.m \ # Model generated by paas in the previous section
 -s <paas profile>.std \ # Archive generated by paas in the previous section
 <input archives>.ar > <output filename>.tim

Optional flags, you may need to remove -m for these
		-t \ # Plot the profile, template and residuals
 -K /xwin \ # Using an xwindow

